Function for simulating survival data.

simsurvdata(n = 100, trt = 2, age = 2, sex = 1.5, cens = 0.3)

Arguments

n

(integer(1))
Number of samples

trt, age, sex

(numeric(1))
Coefficients for covariates.

cens

(numeric(1))
Proportion of censoring to be generated, cut-off time is then selected as the quantile that results in cens.

Value

data.frame()

Details

Currently limited to three covariates, Weibull survival times, and Type I censoring. This will be expanded to a flexible simulation function in future updates. For now the function is primarily limited to helping function examples.

Examples

simsurvdata()
#>     sexF age trt  time status
#> 1      1  48   0 4.972      1
#> 2      1  37   1 6.869      0
#> 3      1  38   1 6.869      0
#> 4      1  26   0 4.639      1
#> 5      1  36   1 6.869      0
#> 6      0  25   1 5.433      1
#> 7      0  34   0 3.463      1
#> 8      1  30   1 6.708      1
#> 9      1  23   0 4.993      1
#> 10     0  26   0 3.515      1
#> 11     0  42   1 5.558      1
#> 12     0  32   0 3.507      1
#> 13     0  32   1 5.391      1
#> 14     0  34   1 5.566      1
#> 15     0  33   0 3.444      1
#> 16     1  24   1 6.524      1
#> 17     0  45   1 5.529      1
#> 18     0  38   1 5.558      1
#> 19     1  44   1 6.869      0
#> 20     0  43   1 5.394      1
#> 21     1  48   1 6.869      0
#> 22     0  46   1 5.483      1
#> 23     0  30   1 5.501      1
#> 24     1  28   0 5.022      1
#> 25     1  42   1 6.869      0
#> 26     1  42   1 6.867      1
#> 27     0  48   1 5.549      1
#> 28     0  44   1 5.298      1
#> 29     0  24   1 5.566      1
#> 30     0  29   1 5.586      1
#> 31     1  26   0 4.821      1
#> 32     0  44   0 3.483      1
#> 33     0  24   1 5.402      1
#> 34     1  24   1 6.869      0
#> 35     1  22   1 6.824      1
#> 36     1  22   1 6.869      0
#> 37     0  36   0 3.341      1
#> 38     1  23   1 6.655      1
#> 39     1  42   1 6.869      0
#> 40     1  42   1 6.869      0
#> 41     1  47   1 6.869      0
#> 42     0  36   1 5.469      1
#> 43     0  46   1 5.454      1
#> 44     0  33   1 5.488      1
#> 45     1  25   0 4.799      1
#> 46     1  33   0 5.061      1
#> 47     1  49   1 6.726      1
#> 48     1  35   1 6.869      0
#> 49     1  28   1 6.869      0
#> 50     0  28   1 5.495      1
#> 51     1  36   1 6.869      0
#> 52     1  39   0 4.961      1
#> 53     1  30   1 6.869      0
#> 54     0  22   1 5.362      1
#> 55     1  34   1 6.869      0
#> 56     1  45   0 5.035      1
#> 57     0  37   1 5.522      1
#> 58     0  31   1 5.379      1
#> 59     1  36   0 4.989      1
#> 60     1  47   0 5.055      1
#> 61     0  35   1 5.561      1
#> 62     0  25   1 5.465      1
#> 63     1  36   1 6.635      1
#> 64     1  49   1 6.869      0
#> 65     1  29   1 6.869      0
#> 66     0  45   0 3.538      1
#> 67     1  29   1 6.869      0
#> 68     1  26   0 5.007      1
#> 69     0  21   0 3.418      1
#> 70     1  27   0 4.962      1
#> 71     1  31   0 4.967      1
#> 72     1  25   1 6.869      0
#> 73     1  29   1 6.869      0
#> 74     1  21   1 6.869      0
#> 75     1  50   1 6.819      1
#> 76     1  44   1 6.869      0
#> 77     1  23   1 6.869      0
#> 78     0  46   1 5.524      1
#> 79     1  37   0 5.057      1
#> 80     1  33   1 6.869      0
#> 81     0  22   1 5.396      1
#> 82     0  37   1 5.317      1
#> 83     0  22   0 3.501      1
#> 84     1  26   1 6.755      1
#> 85     1  36   1 6.869      0
#> 86     1  34   1 6.869      0
#> 87     0  25   0 3.547      1
#> 88     1  24   1 6.778      1
#> 89     0  35   0 3.455      1
#> 90     0  48   0 3.537      1
#> 91     1  30   1 6.869      0
#> 92     0  26   1 5.492      1
#> 93     1  28   1 6.869      0
#> 94     0  36   1 5.434      1
#> 95     1  21   0 4.987      1
#> 96     1  44   1 6.869      0
#> 97     0  23   1 5.537      1
#> 98     0  36   0 3.455      1
#> 99     0  37   1 5.339      1
#> 100    1  39   1 6.841      1