Helper function to return a class or constructed object for
pytorch activation function from torch.nn.modules.activation.
get_pycox_activation(
activation = "relu",
construct = TRUE,
alpha = 1,
dim = NULL,
lambd = 0.5,
min_val = -1,
max_val = 1,
negative_slope = 0.01,
num_parameters = 1L,
init = 0.25,
lower = 1/8,
upper = 1/3,
beta = 1,
threshold = 20,
value = 20
)(character(1))
Activation function method, see
details for list of implemented methods.
(logical(1))
If TRUE (default) returns constructed
object, otherwise a class.
(numeric(1))
Passed to celu and elu.
(integer(1))
Passed to glu, logsoftmax, softmax, and
(numeric(1))
Passed to hardshrink and softshrink.
(numeric(1))
Passed to hardtanh.
(numeric(1))
Passed to leakyrelu.
(integer(1))
Passed to prelu.
(numeric(1))
Passed to prelu.
(numeric(1))
Passed to rrelu.
(numeric(1))
Passed to softplus.
(numeric(1))
Passed to softplus and threshold.
(numeric(1))
Passed to threshold.
Implemented methods (with help pages) are
"celu" reticulate::py_help(torch$nn$modules$activation$CELU)
"elu" reticulate::py_help(torch$nn$modules$activation$ELU)
"gelu" reticulate::py_help(torch$nn$modules$activation$GELU)
"glu" reticulate::py_help(torch$nn$modules$activation$GLU)
"hardshrink" reticulate::py_help(torch$nn$modules$activation$Hardshrink)
"hardsigmoid" reticulate::py_help(torch$nn$modules$activation$Hardsigmoid)
"hardswish" reticulate::py_help(torch$nn$modules$activation$Hardswish)
"hardtanh" reticulate::py_help(torch$nn$modules$activation$Hardtanh)
"relu6" reticulate::py_help(torch$nn$modules$activation$ReLU6)
"leakyrelu" reticulate::py_help(torch$nn$modules$activation$LeakyReLU)
"logsigmoid" reticulate::py_help(torch$nn$modules$activation$LogSigmoid)
"logsoftmax" reticulate::py_help(torch$nn$modules$activation$LogSoftmax)
"prelu" reticulate::py_help(torch$nn$modules$activation$PReLU)
"rrelu" reticulate::py_help(torch$nn$modules$activation$RReLU)
"relu" reticulate::py_help(torch$nn$modules$activation$ReLU)
"selu" reticulate::py_help(torch$nn$modules$activation$SELU)
"sigmoid" reticulate::py_help(torch$nn$modules$activation$Sigmoid)
"softmax" reticulate::py_help(torch$nn$modules$activation$Softmax)
"softmax2d" reticulate::py_help(torch$nn$modules$activation$Softmax2d)
"softmin" reticulate::py_help(torch$nn$modules$activation$Softmin)
"softplus" reticulate::py_help(torch$nn$modules$activation$Softplus)
"softshrink" reticulate::py_help(torch$nn$modules$activation$Softshrink)
"softsign" reticulate::py_help(torch$nn$modules$activation$Softsign)
"tanh" reticulate::py_help(torch$nn$modules$activation$Tanh)
"tanhshrink" reticulate::py_help(torch$nn$modules$activation$Tanhshrink)
"threshold" reticulate::py_help(torch$nn$modules$activation$Threshold)
# \donttest{
if (requireNamespaces("reticulate")) {
#' # returns constructed objects
get_pycox_activation(activation = "relu", construct = TRUE)
# returns class
get_pycox_activation(activation = "selu", construct = FALSE)
}
#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'torch'
#> Run `reticulate::py_last_error()` for details.
# }